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A NONSTANDARD PROOF OF THE JORDAN
CURVE THEOREM

Louis NARENS

In this paper a proof of the Jordan curve theorem will be
presented. Some familiarity with the basic notions of non-
standard analysis is assumed. The rest of the paper is self-
contained except for some standard theorems about polygons.

The theorem will be proved in what ought to be a natural
way: by approximation by polygons. This method is not usu-
ally found in the standard proofs since the approximating
sequence of polygons is often unwieldly. But by using non-
standard analysis, one can approximate a Jordan curve by a
single polygon that is infinitesimally close to the curve. This
allows types of reasoning which are extremely difficult and un-
natural on sequences of polygons.

Preliminaries. The basic concepts of nonstandard analysis and
some acquaintance with polygons are assumed. Some basic defini-
tions and theorems of point set topology are also assumed.

Throughout this paper the following notations and conventions
will be used:

(1) All discussion, unless otherwise stated, is assumed to be
about a nonstandard model of the Euclidean plane. 'Otherwise
stated" will often mean that the notion or concept will be prefaced
by the word "standard".

(2) A standard concept and its extension will be denoted by
the same symbol. If it is necessary to distinguish between them,
reference to the model in which they are to be interpreted will be
made.

(3) If A and B are sets of points and x is a point, then \x, A\
will denote the distance from x to A and \B, A\ = mίxeB\x, A\.
(Thus if A Π B Φ 0 then \A, B\ = 0.) \x,y\ will denote the distance
from the point x to the point y.

(4) / will denote a fixed continuous function on [0,1] into the
Euclidean plane with the property that x < y and f(x) — fyy) if and
only if x — 0 and y = 1. C will denote the range of /.

( 5 ) x ~ y will mean that the distance from x to y is infinitesimal.
If x is near-standard then °χ will denote the standard y such that
x ~ y.

(6) \i x and y are points then xy will denote the ordered,
closed line segment that begins at x and ends at y.

(7) If x and y are points then intv (x, y) is the set of all points
z of xy such that z Φ x and z Φ y.
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2* The approximation of C* In this section the Jordan curve
C will be approximated by a polygon P. Not all approximations of
C by polygons are suitable for our purposes. A particular sort of
approximation, called a good approximation, will be constructed. A
good approximation not only approximates the point set C, but also
has associated with it a function h, h: P—+[0,l], that approximates
f~ι in the following sense: the point set C has the property that
if x, yeC then x ~ y if and only if f~\x) = f~ι{y) or

h a n d P w i l l h a v e t h e p r o p e r t y t h a t if x,yeP t h e n x = y if a n d
only if h{x) ~ h{y) or \h{x) — h(y)\ = 1.

DEFINITION 2.1. A good approximation for C is a simple closed
polygon P and a function h: P—> [0, 1] which assumes only (nonstand-
ardly) finitely many values such that,

( 1 ) if x e C then there is a y e P such that x ~ y,
( 2) if x 6 P then there is a 7/ e C such that x ~ y,
( 3 ) if x, ?/ G P and h(x) = fc(?/) then x = y,
( 4 ) if x, 2/ 6 P and α? = 3/ then / φ ) = h(y) or | Λ(a ) — h(y) \ ~ 1
( 5 ) there are points K = {&0, •••>&,} (where s is an infinite

natural number) such that P — (\Ji<s kiki+λ) U ̂ s&0 and such that:
(a) if x — kQ then A(a ) = 0,
(b) if for i <s, xe kiki+ι and x Φ k{ then h(ki) < Λ(α ) = h(ki+ι),
(c) if cc Φ kQ and ίϋG fcsfc0 then h{x) = 1.

DEFINITION 2.2. Part (5) of Definition 2.1 gives a natural method
of ordering P in terms of {k0, , &J. For x, ye P and & ̂  7/ define
x < y iί and only if (1) x = &0, or (2) a; G fci^+1 and y e kjkj+ι and
i < j , or (3) α; e KiKi+ί and 2/ G iΓsiΓ0 and 2/ ^ iΓ0, or (4) x and 2/ belong
to the same ordered segment (kiki+1 or ksk0) and x comes before y
in the ordering of that segment. (Also note that if x,yeP and
h(x) < h{y) then x < y.)

THEOREM 2.1. A good approximation for C exists.

Proof. Let M be an infinite natural number and

ft = max I f(t), Λί') I and £ 2 - max | f(t), f(t') \
\t'-t\SUM ll + ί'-ίl^i/Jf

and /9 = max {ft, ft}. Since / i s standard continuous, β is infinitesimal.
Divide [0,1] into M equal intervals [tif ti+]] with ί0 = 0 and £*• = 1.
For i < M let α4 = f(U). Then |a<, α ί + 1 | ^ ft The points k{ will be
defined inductively. k0 = α0, ki+1 = αp if and only if | αp, k{ \ ^ /3 and
for each j > p either |α y , h\> β or l/"" 1^) - Z " 1 ^ ) ! ;> J, where
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f~~\x) is the least t such that f(t) = x. Since there are only "finitely"
many aif there will be a last fc< defined. This last element is de-
noted by k{. The points k{ will have the following properties:

(Al) / - W s l ,
(A2) if a e C then there is an i ^ I such that kt = α,
(A3) for each i <£ £ there is an aeC such that kt = α,
(A4) if f~ι(kj) is not in the monad of 1 and j" > i + 1 then

1 ,̂̂ -1 > β,
(A5) if i + 1 < Z t h e n kjci+1 Π ki+1ki+2 = {ki+1},

(A6) i f θ ^ p < i — 2 and f~\ki) is not in the monad of 1 then
kpkp+ι Π kiki+ί = 0 ,

(A7) if /-ι(fcp) is not in the monad of 0, f~\kq) ~ 1, and p ^
g — 2, then kpkp+ι Π ̂ _Lfcg = 0 .

Proof of (Al). Let kt = ap. \ap, aM\ must be infinitesimal or
otherwise kι+1 would exist. This means that f~γ{ap) = 1 or f~ι{ap) —
0. If f-\ap) ~ 0 then kι+ί would exist. Therefore f~ι(ap) = Z"1^,) = 1.

Proof of (A2). By the method in which the a{ were defined,
there is an index p such that ap ~ a. Let j be the largest "natural
number" £l such that f~\ks) S /~ L K). If f"\a9) - /-'(Λy) were
not infinitesimal then f~ι(kj+ι) < f~\ap). Therefore f~\ap) - f^(kά)
is infinitesimal and thus k5 = ap ~ a.

Proof of (A3). Let a = k{.
Proof of (A4). Immediately follows from the definition of ki+1.
Proof of (A5). Suppose not. Let b e kiki+1 Π kί+1ki+2 and b Φ ki+1.

Then δ, kif ki+1, ki+2 are collinear. Since \kiy ki+2\ > β, ki+2gkiki+ι and
ki g ki+ιki+2. But this can only happen to collinear points kίy ki+ι, ki+2

if and only if kiki+1 Π ki+1ki+2 = {ki+1}.

Proof of (A6). Assume that kpkp+1 Π kiki+1 Φ 0 . Then kpkiykikp+11

kp+ιki+ί, ki+1kp form the sides of a quadralateral. Without loss of
generality assume that the angle at kp ^ π/2 radians. Then in the
triangle with vertices at kiy kp, and ki+1, the angle at kp ^ π/2 radians.
This makes kiki+1 the longest side. Therefore \kp, h\ ^ \ki9 ki+1\ ^ β.
This contradicts (A4).

Proof of (A7). Similar to (A6).
If % < I, xe kiki+1, and x Φ ki define h(x) — f~1(ki+ι).
pL = \Ji<ιkiki+1 and h almost form a good approximation for C.

Unfortunately Pι is not a closed polygon and may intersect itself in
the monad of fc0. To form a simple closed polygon from Pλ we let
kj be such that h{k3) is not in the monad of 0 or 1. Let

P2 = U ftifcί+i and P3 - U fcifci+i

By (A5), (A6), and (A7) P2 and P3 are simple polygonal paths. P2

and P3 can be ordered in such a way that P2 starts at yfc0 and ends
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at kj and P3 starts at kd and ends at kx. Let E — kJcQ Γϊ P3 Since
kιkQ and P3 are closed sets and kxePzC\ kιk01 let e be the smallest
member of E in the ordering induced by P3. Then

P4 = {xeP3\kj^x^e}U ek0

is also a simple polygonal path. For x e ek0 define h(x) = 1. P4 can
be ordered in such a way that P4 starts at ki and ends at kQ. Since
&0 e P2 Π P4, let ^ be the greatest member in the ordering of P2 of
P2ΠP4. Then P = {xe P2\e1^ x ̂  kj}U{xe P4\kj ^ x ^ e,} is a simple
closed polygon. Let hγ(e^ = 0 and for I G P - {βj let h^x) = /φ). Then
P and Λx will form a good approximation for C by (A2) and (A3) and
this construction.

Notation. Throughout the rest of this paper, we let the polygon
P and the function h be a fixed good approximation for C.

3* The inside and outside of C. The following theorem and
other easily established facts about polygons will be used without
proof in this paper. A proof of the following theorem can be found
in [1].

THEOREM 3.1. (The Jordan curve theorem for polygons.) A
simple closed polygon Q divides the Euclidean plane into three non-
empty disjoint sets, the polygon itself and two open components.
One of the components is bounded and is called the inside of Q, and
the other component is unbounded and called the outside of Q.

DEFINITION 3.1. The inside of C is the set of all standard points
x such that x is inside P and \P, x\ is not infinitesimal.

DEFINITION 3.2. The outside of C is the set of all standard
points x such that x is outside P and \P,x\ is not infinitesimal.

THEOREM 3.2. Each standard point is either in the inside of
C, in the outside of C, or is on C.

Proof. Suppose that x is a standard point and x is not in the
inside of C and x is not in the outside of C. Then either x is inside
P and \P, x\ = 0, or x is outside P and \P, x\ = 0, or x is on P. In
any case, |P, x\ ~ 0. Since P is a good approximation for C, \C,x\ =
0. Thus there is a point y on C such that x ~ y. Let t = f~\y).
Let °t be the standard real number in [0,1] that is nearstandard to
t. Since / is a standard continuous function, f(°t) is standard, and
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/(°ί) is on C, and x~f(°t). Since there is only one standard point
in each monad, x = f(°t). Thus xeC.

THEOREM 3.3, The inside of C is bounded in the standard to-
pology and the outside of C is unbounded in the standard topology.

Proof. It is true in the standard model that there is a real
number r such that for some fixed point x0, \xo,f(t)\ < r for all te
[0,1]. Therefore in the nonstandard model, \xo,C\<r. Since P is
a good approximation for C, \xQ, P\ < r + 1. This implies that the
inside of C is bounded. The outside of C is unbounded since there
are standard points outside of P that are greater than any given
standard distance.

THEOREM 3.4. The inside of C and the outside of C are open.

Proof. Let a be a point in the inside of C. Let \a, C\ = r.
Then °r > 0. Let E — {x\x is standard and \a, x\ < °r}. Then E is
a standard open set containing α, and E is contained in the inside
of C. Similarly for the outside of C.

DEFINITION 3.3. If t, tf e [0,1] let

Z>(ί,ί') = min{ | i ' , i | , |1 + ί',ί |, |1 + ί, t'\] .

Note that if a,beP then a ~ b if and only if D{h{a), h(b)) ~ 0.

LEMMA 3.1. Let a, be P and a < 6, PL = {x\a ^ x ^b}, P2~

P — Px. Assume that D(h(a),h(b)) is not infinitesimal, xePλ, yeP21

and x = y. Then x ~ a or x ~ b.

Proof. Suppose not. Since xe Px and a <̂  x <£ 6, &(α) <; φ ) g ( )
By hypothesis, x is not infinitesimally close to a and sc is not in-
finitely close to δ. Therefore h(x) is not infinitesimally close to h(a)
or h(b). Since T/GP 2 , Λ(2/) ^ h(a) or A() ^ λ(6)

Case 1. /̂ (̂ /) ^ Λ(α). Since x = y, either h{x) — h(y) ~ 0 or
h(x) — h(y) = 1. But h(x) - h(y) is not infinitesimal since h(x) - h(y) ^
Λ(α?) — h(a) which is not infinitesimal. h(x) — h(y) is not in the
monad of 1. For if it were, h(x) = 1 and since h(b) > h(x), h(b) — 1.
But then h(x) ~ h(b). A contradiction.

Case 2. h(y) >̂ h(b). Similar to Case 1.

THEOREM 3.5. The inside of C is nonempty.
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Proof. Let L be the set of line segments that have endpoints
on P and are contained in (inside P) U P. Since the function h takes
on only "finitely" many values, there is a fixed segment, αδ, in L
such that D(h(ά), h(b)) is a maximum.

Case 1. h(b) - h(ά) is not infinitesimal. Without loss of gener-
ality, assume that a <b. Let c be the midpoint of ab, Px = {x\a ^
a? ̂  6}, and P2 - (P — P,) (j {α, 6}. Since c is not infinitesimally close
to a or δ, it follows from Lemma 3.1 that c is not infinitesimally
close to both Px and P2. Without loss of generality, suppose that c
is not infinitesimally close to P l β Let r = |c, PJ and A = αδ Π Pi
Since A is a closed set, let αx and bλ be those members of A such
that in the ordering of ab, for each x, ye A if x < c and i/ > c then
x ^ax<c <b,^y. (See Figure 3.1.) Then α1δ1 U {x e P11 αA ̂  x ^ 61}
can easily be shown to be a simple closed polygon, ζ>, with the
property that the inside of Q is inside P. Further, P2 Π (inside Q) = 0 .
If d is inside Q and is the endpoint of the segment of length r/3,
drawn perpendicular through c to the side aιbι of Q, then it follows

FIGURE 3.2.
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that d is inside P and that \d, P\ ̂  r/3. Since rβ is not infinitesimal,
d is inside C.

Case 2. D(h(ά), h(b)) is infinitesimal. Without loss of generality,
assume that a < b and &(α) is not in the monad of 0. Let

B = {a; e PI α& e L and /φ) = h(b)} .

In the ordering " <" of P let c = sup B. By continuity, ac e L. Since
c >̂ b, A(c) >̂ /?,(&). Since h(a) is not in the monad of 0, and D(h(a),
h(c)) is infinitesimal, and h(c) ̂  h(b), and Λ(δ) — h(a) is a maximum
it follows that h(c) = /&(&). If e € P and e > c then aegL. For if e e P
and e > c and ae e L, then either h(e) = λ(c), contradicting the definition
of c, or h(e) > hie), contradicting the maximality of D(h(a), h(b))
together with h(a) not being in the monad of 0. Similarly a point
de P can be found such that for all e < d, eagL and dae L. (See
Figure 3.2.) Let Q, = {x e P | x S d or x ^ c}. Let Q = da U αc U Qλ.
Then Q is a simple closed polygon with inside Q c inside P. Since
α is a vertex of Q, it follows that a segment αg can be drawn such
that intv (α, ?) is inside Q and q is on Q. It then follows that qeQ^
Thus aq e L. But by the method in which c and d were chosen, this
is impossible.

4* Connectivity of the inside and outside of C.

DEFINITION 4.1. If AaB and B is a standard compact set, let
°A - {°x\xeA}.

LEMMA 4.1. If A is a nonempty connected set and Ac: B where
B is a standard compact set, then ° A is connected in the standard
model.

Proof. Suppose °A is not connected in the standard model.
Then in the standard model, there are open sets W and V such that
WΓ\°AΦ 0, Vf] °AΦ 0, WΓ) V= 0, and °ACLW\JV. But xe W
in the standard model implies that the monad of x is contained in
W in the nonstandard model. Therefore in the nonstandard model,
W and V are open sets, W Π A Φ 0 , V Π A Φ 0 , W Π V= 0 , and
A c W U V. Hence A is not connected. But this contradicts the
hypothesis that A is connected. Therefore ° i is connected in the
standard model.

LEMMA 4.2. Let e, g be points on P such that intv (e, g) is inside
P. Let a,b be points on eg such that \a, P\, \b,P\, and \a,b\ are
not infinitesimal. Then there is a connected set, A, such that A is
inside P,a,beA, and \A,P\ is not infinitesimal.
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Proof. Assume the hypotheses. Without loss of generality assume
that e and g are on the F-axis. Let w be an arbitrary point of ab.
Let c and d be points of P such that cd is parallel to the X-axis,
w ecd, and intv (c, d) is inside P. It will be shown that (c, d) is not
infinitesimal. There are three cases to consider: (i) w ~ a, (ii) w — δ,
(iii) w is not infinitesimally closed to either a or b. Cases (i) and (ii)
immediately follow from the assumption that \aJP\ and \b, P\ are not
infinitesimal, (iii) will be shown by contradiction. Assume that c = d.
Without loss of generality we may assume that c is in the left half-
plane d is in the right half-plane, and that in the ordering of P, c < d.
For convenience we assume that h(d) is not in the monad of 1. Let
Pi = {x I x e P and c ^ x fg d). Then for each x e P19 h(d) — h{x) = 0.
However, since c is in the left-plane and d is in the right half-plane,
Pi intersects the Γ-axis at some point p. From (iii) it follows that
πάnQw, a\, \w,b\) is not infinitesimal. Since

m i n (\w,a\,\w,b\)^ \w, p \ ^ \d, p \ ,

it follows that | d, p | is not infinitesimal. Hence h(d) — h{p) is not
infinitesimal—a contradiction.

One again, let w = (0, τv,) be an arbitrary point of abc, = (c19 w,)
and d = (dlf wx) be points on P such that cd is parallel to the X-axis
and intv (c, ώ) is inside P. Let π(w) — (lβ(dι — cL), wλ). Then, by
construction, u(w) is inside P and \u(w), P\ is not infinitesimal. Let

A = au(a) U {u(w) \ w e ab} U 5t6(δ) .

Then A is a connected set that is inside P and is such that ae A,
be A, and \A, P\ is not infinitesimal.

LEMMA 4.3. Let au a2 be distinct points inside C. Then there
is a connected set A such that aLe A, a2e A, A is inside P, and
\A,P\ is not infinitesimal.

Proof. Let a19 a2 be distinct points inside C. Let cιd1 be a seg-
ment through aL such that |α2, c^J is not infinitesimal, cι and dγ are
on P, and intv (clf dλ) is inside P. Similarly, let c2d2 be a segment
through α2 that is parallel to cA, and such that c2 and d2 are on P
and intv (c2, d2) is inside P. Without loss of generality, it may be
assumed that cγ < c2 < <i2 < dx.

Let P, = {x e P \ cL ^ x ^ c2} and P 2 = {x e P \ d2 ^ .τ ̂  d,}. (See
Figure 4.1.) |PX, P 2 | is not infinitesimal. For if xγ and x2 are arbitr-
ary members of Px and P 2 respectively, then cλ ^ xx ^ c2 ^ d2 ^ x2 ^ dlf

and hence h{c^) ̂  h{x^) ̂  h(c2) <*h(d2) ̂  fe(x2) ^ ^(cίx). Since c^i passes
through aι and |α l y P | is not infinitesimal, h(dλ) — h{c^) is not in the
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monad of 0 or 1. Similarly h(d2) — h(c2) is not in the monad of 0 or
1. But, h{d^ — A(d) ̂ > h(x2) — / φ : ) Ξ> h(d2) — h(c2). Therefore h(x2) —
h(Xi) is not in the monad of 0 or 1. Thus \x19 x2\ is not infinitesimal.
Therefore \P19 P2\ is not infinitesimal.

Let r = min {\P19 P2\, {c^, c2d2\, \a19 P | , |α2, P |} . Without loss of
generality, it may be assumed that c1d1 is on the Y-axis. Since each
line segment I that is parallel to c1d1 has the same X-coordinate for
each of its points, we shall say that the coordinate of I is the in-
coordinate of its points. Let v be the X-coordinate of c2d2. Without
loss of generality we may assume that v is positive. Let

L = {cd\ce Pί9 de P2, intv (c, d) is inside P,

and cd is parallel to cγd^ .

Let B = {x I there is an le L such that xe I and \x, P\ > r/4}. Let
E be the largest connected subset of B that contains α1# Let

T = {t I there is a z e E such that t is an X-coordinate of z} .

Let s be the supremum of T. s = v. For if s were less than
v, let cde L and such that s = X-coordinate of cd. Let p be the
midpoint of cd. If \p,P\^ r/4 then the disk D about p of radius
r/4 intersects £7. Then (E [j D) Π B would be a connected subset of
B containing at that is larger than E. This is impossible since E is
the largest connected subset of B containing aL. Thus \p,P\ < r/4.
Since \p, P J ^ r/2 and |p, P 2 | ̂  r/2, there is a point g e P - (P, U P2)
such that \p, q\ ̂  r/4. Since Q = c1d1 U Pi U c2d2 U P 2 is a simple closed
polygon, and p is inside Q and g is outside Q, pq Π Q Φ 0 . This
can only happen if pq Π c.d, Φ 0 or c2d2 Φ 0. Assume that
pq Π c&Φ 0. (The case of pq Π c2d2 Φ 0 follows similarly.) Then
\p, c^,] < r/4. Since ce Pλ and de P 2 and cd is parallel to cγd^ there
is a point weed such that |w, α j < r/4. Since \alf P\ ^ r, the disk
A of radius r/4 about the point w has the property that \D19P\ >
r/4. Also, A Π # ^ 0 and (B Π A) - E Φ 0. Therefore (B f] D,) U E
is a larger, connected subset of B than ϋJ. A contradiction.

1 1

FIGURE 4.1.
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Since s = v, E Π c2d2 φ 0 . Let e e E Π c2d2. Since \E,P\ ^ r/4,
β is not infinitesimally close to P. By Lemma 4.2, there is a con-
nected set ί7 such that ee F, a2e F, \F, P\ is not infinitesimal, and
F is inside P. Let A = E \J F. Then α1? a2e A, A is connected, | A, P|
is not infinitesimal, and A is inside P.

THEOREM 4.1. The inside of C is connected (in the standard
model).

Proof. Suppose not. Let X = inside C. Then in the standard
model, there are open sets V and W such that Vf]X Φ 0 , Wf) Xφ®,
WΠ V= 0 , and XaWljV. Let αe F n X and δe TFίΊ X. Then
in the nonstandard model, by Lemma 4.3 there is a connected set
A such that a, be A, A is inside P, and |A, P | is not infinitesimal.
Note that since \A, P\ is not infinitesimal, ° i is inside C. That is,
° AQ X. Also, by Lemma 4.1, ° A is connected in the standard model.
Therefore in the standard model,

VO°AΦ0, Wn°AΦ0, F n T F - 0 ,

and °Acz V[jW. Hence °4 is not connected. A contradiction.

LEMMA 4.4. Let α, b be points in the outside of C. Then there
is a line I that intersects P and such that

(1) |α, l\ and \b,l\ are not infinitesimal, and
( 2 ) a and b are in the same half-plane determined by I.

Proof. Let a, b be points in the outside of P and c a point in
the inside of C. Then a, b, and c are standard and \a, P\, \b, P\, and
\c, P\ are not infinitesimal. Let k be the line through a and c. Let
Hί and H2 be the closed half-planes determined by k. Without loss
of generality, suppose that beH,. Since |c, P\ is not infinitesimal,
there is a point d that is inside P and such that \d, Hλ\ is not in-
finitesimal. Let I be the line through d that is parallel to k. Then
\a,l\ and \b,l\ are not infinitesimal and a and b are in the same
half-plane determined by I.

THEOREM 4.2. The outside of C is connected (in the standard
model).

Proof. Let a and b be points in the outside of C. It only needs
to be shown that there is a connected set in the outside of C that
contains a and b. By Lemma 4.4, let I be a line through P such
that a and b are in the same closed half-plane, H, that is determined
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by I. Then a square S can be found with the following four pro-
perties:

(1) one side of S is on I,
(2) I Π P is contained on a side of S,
( 3) a and b are inside S and \a, S\ and |δ, S| are not infinitesimal,
(4) SczH.

Let T = (inside of S) Π (outside of P). Then it is easy to show that
T is an open set that has a simple closed polygon, Q, as a boundary.
In other words, inside of Q = Γ, α and 6 are in the inside of Q,
|α, Q\ and |δ, Q| are not infinitesimal. Now, °Q = {°x\xeQ} can
easily be seen to be a Jordan curve in the standard model (composed
partly of the square °S = {°x\xeS} and partly of C) with α and b
in the inside of °Q. Thus by Theorem 4.1, in the standard model
there is a polygonal path, A, which is inside °Q and such that
a, be A. But since the inside of °Qczthe outside of C, it follows
that a and 6 belong to a connected set that is in the outside of C.
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